Science

Science Stories: Adventures in Bay-Delta Data

Our last post gave you an introduction to the water weeds of the Delta. Invasive submerged aquatic vegetation is taking over the waterways, making it difficult for boaters, fish, water project operations, and scientific researchers (Khanna et al. 2019). As we described in the blog “Getting into the weeds”, they are hard to control too. But how do we collect data on aquatic weeds and what do those data look like?

How do we collect data?

There are two main types of data that we can work with (see IEP Technical Report 92 (PDF) for details). The first, is collected with areal photographs, and is known as ‘remote sensing’ (Figure 1). A specialized camera (sensor) is mounted on a platform (a drone, airplane, or satellite), and it can collect a regular-old photograph, or a hyperspectral photograph that records a lot of wavelengths of light that our eyes can’t see. Because different types of plants reflect different spectra of light (they are different colors) these photographs can be used to map location and extent of vegetation (Figure 2).

Figure 1. Diagram showing how remote sensing works. Light from the sun is reflected by objects on the ground. Different wavelengths of light are reflected differently. The sensor (camera) on the platform (airplane, satellite, drone, etc) registers the different wavelengths and stores them as an image file. Later, experts can classify the images based on which wavelengths of light were reflected.

The UC Davis Center for Spatial Technologies and Remote Sensing (CSTARS) has been mapping vegetation in the Delta using hyperspectral imagery collected with airplanes for most of the last 20 years (like the map in Figure 2). They create maps every year and share their data online via the Knowledge Network for Biocomplexity.

Figure 2. Hyperspectral image map of Suisun Marsh collected by CSTARS. Colors are used to represent different vegetation types (they aren’t really that color).

Hyperspectral imagery is very good for identifying floating aquatic vegetation and terrestrial vegetation, but the water makes it hard to identify submersed vegetation. We can map where submersed vegetation is, but not what kind of vegetation is there. To look at community composition, we need to […]

Full article: iep.ca.gov

Recent Posts

Saltwater intrusion will taint 77% of coastal aquifers by century’s end, modeling study finds

Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground…

1 week ago

A ‘Devil’ Seaweed Is Spreading Inside Hawaiʻi’s Most Protected Place

An invasive algae has wrecked huge sections of reef in Papahānaumokuākea Marine National Monument. Scientists…

1 week ago

A meadow in the Tahoe National Forest was drying up with sagebrush. Now it’s a lush wetland.

Sardine Meadow is a key link in conservation efforts for the Sierra Nevada, north of…

2 weeks ago

Conservation & Sustainability: fertilizer nitrates

UC Davis researchers insert a device that continuously collects water samples underground, providing real-time data…

3 weeks ago

Drought Mitigation: Should We Be Farming in the Desert?

Irrigated farmland in the desert of the Imperial Valley. (Photo credit: Steve Proehl, Getty Images)…

3 weeks ago

Scathing report released detailing Navy’s handling of Red Hill fuel spill

The Inspector General of the Department of Defense released some scathing reports Thursday over the…

1 month ago