We tap it, pump it and draw it from below the surface of every imaginable landscape, from desert to well-manicured suburban yard. It is the one essential ingredient required to sustain life. Water.
So there is little wonder that we constantly question where it comes from, where it’s going, how much is available and whether it is and will remain potable. Thanks to exceedingly rare isotopes of krypton (Kr) and the innovative handiwork of researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory, we can now answer many of those questions that could not be addressed previously with more traditional methods.
A unique, laser-based, atom-counting technique called Atom Trap Trace Analysis (ATTA), developed with support from DOE’s Nuclear Physics program, is helping physicists at Argonne selectively capture and count the isotopes 81 Kr and 85 Kr to determine the age of ice and groundwater. The results provide valuable information about the dynamics, flow rates and direction of water in aquifers, particularly those vital to arid regions.
Refinements to the […]
Full article: Radiokrypton dating plumbs mysteries of water aquifers
Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground…
An invasive algae has wrecked huge sections of reef in Papahānaumokuākea Marine National Monument. Scientists…
Sardine Meadow is a key link in conservation efforts for the Sierra Nevada, north of…
UC Davis researchers insert a device that continuously collects water samples underground, providing real-time data…
Irrigated farmland in the desert of the Imperial Valley. (Photo credit: Steve Proehl, Getty Images)…
The Inspector General of the Department of Defense released some scathing reports Thursday over the…