Ecosystems - Biology - Animals

Scientists uncover the amazing way sandgrouse hold water in their feathers

Photo: The belly feathers of the Namaqua Sandgrouse can absorb and retain water so efficiently that the male birds can fly more than 20 kilometers from a distant watering hole back to the nest and still retain enough water in their feathers for the chicks to drink. Image: iStock

Many birds’ feathers are remarkably efficient at shedding water — so much so that “like water off a duck’s back” is a common expression. Much more unusual are the belly feathers of the sandgrouse, especially Namaqua sandgrouse, which absorb and retain water so efficiently the male birds can fly more than 20 kilometers from a distant watering hole back to the nest and still retain enough water in their feathers for the chicks to drink and sustain themselves in the searing deserts of Namibia, Botswana, and South Africa.

How do those feathers work? While scientists had inferred a rough picture, it took the latest tools of microscopy, and patient work with a collection of sandgrouse feathers, to unlock the unique structural details that enable the feathers to hold water. The findings appear today in the Journal of the Royal Society Interface , in a paper by Lorna Gibson, the Matoula S. Salapatas Professor of Materials Science and Engineering and a professor of mechanical engineering at MIT, and Professor Jochen Mueller of Johns Hopkins University.

The unique water-carrying ability of sandgrouse feathers was first reported back in 1896, Gibson says, by E.G.B. Meade-Waldo, who was breeding the birds in captivity.

“He saw them behaving like this, and nobody believed him! I mean, it just sounded so outlandish,” Gibson says.

In 1967, Tom Cade and Gordon MacLean reported detailed observations of the birds at watering holes, in a study that proved the unique behavior was indeed real. The scientists found that male sandgrouse feathers could hold about 25 milliliters of water, or about a tenth of a cup, after the bird had spent about five minutes dipping in the water and fluffing its feathers.

Video of water spreading through the specialized sandgrouse feathers, under magnification, shows the uncoiling and spreading of the feather’s barbules as they become wet. Initially, most barbules in the outer zone of the feather form tubular features.

Credit: Specimen #142928, Museum of Comparative Zoology, Harvard University © President and Fellows of Harvard College.

About half of that amount can evaporate during the male bird’s half-hour-long flight back to the nest, where the chicks, which cannot fly for about their first month, drink the remainder straight from the feathers.

Cade and MacLean “had part of the story,” Gibson says, but the tools didn’t exist at the time to carry out the detailed imaging of the feather structures that the new study was able to do.

Gibson and Mueller carried out their study using scanning electron microscopy, micro-computed tomography, and video imaging. They borrowed Namaqua sandgrouse belly feathers from Harvard University’s Museum of Comparative Zoology, which has a collection of specimens of about 80 percent of the world’s birds.

Bird feathers in general have a central shaft, from which smaller barbs extend, and then smaller barbules extend out from those. Sandgrouse feathers are structured differently, however. In the inner zone of the feather, the barbules have a […]

Full article: news.mit.edu

Summary
Article Name
Scientists uncover the amazing way sandgrouse hold water in their feathers
Description
Namaqua sandgrouse, which absorb and retain water so efficiently the male birds can fly more than 20 kilometers from a distant watering hole back to the nest and still retain enough water in their feathers for the chicks to drink. Video microscopy shows the process in action.
Author
Publisher Name
MIT News Office

Recent Posts

Saltwater intrusion will taint 77% of coastal aquifers by century’s end, modeling study finds

Watersheds on the U.S. Eastern Seaboard will be among the areas most affected by underground…

1 week ago

A ‘Devil’ Seaweed Is Spreading Inside Hawaiʻi’s Most Protected Place

An invasive algae has wrecked huge sections of reef in Papahānaumokuākea Marine National Monument. Scientists…

1 week ago

A meadow in the Tahoe National Forest was drying up with sagebrush. Now it’s a lush wetland.

Sardine Meadow is a key link in conservation efforts for the Sierra Nevada, north of…

2 weeks ago

Conservation & Sustainability: fertilizer nitrates

UC Davis researchers insert a device that continuously collects water samples underground, providing real-time data…

3 weeks ago

Drought Mitigation: Should We Be Farming in the Desert?

Irrigated farmland in the desert of the Imperial Valley. (Photo credit: Steve Proehl, Getty Images)…

3 weeks ago

Scathing report released detailing Navy’s handling of Red Hill fuel spill

The Inspector General of the Department of Defense released some scathing reports Thursday over the…

1 month ago